
Computational Intelligence and Machine Learning

 e-ISSN: 2582-7464 Volume 5, Issue 1, April 2024

 1

Enhancing GraphQL Authorization with Open

Policy Agent (OPA)

Venkata Thota

Solution Architect/Lead
E-Mail: vcthota@gmail.com

Abstract

GraphQL has developed into a powerful query language for APIs, allowing for unprecedented flexibility when retrieving data. However,

securing GraphQL APIs, especially when it comes to authorization, poses one of the most challenging tasks. This paper explores how Open

Policy Agent (OPA) serves as a robust solution to address these challenges by providing a unified policy language for access control across

diverse services, including GraphQL. In the document, GraphQL authorization is explored, emphasizing its distinct challenges compared to

traditional REST APIs. Due to GraphQL's dynamic nature and the ability of clients to specify the exact data they wish to retrieve traditional

access control mechanisms have difficulty providing fine-grained authorization controls.

Open Policy Agent (OPA) is a general-purpose policy engine that is open-source and contains a declarative policy language known as Rego.

By using this language, developers are able to articulate complex authorization logic in a concise and clear manner. A step-by-step

procedure is provided for integrating OPA with GraphQL, providing guidance on defining policies in Rego, integrating OPA into the

GraphQL server, and enforcing fine-grained authorizations. This document discusses how to handle complex relationships, nested queries,

and the importance of auditing and monitoring authorization decisions.

The benefits of implementing GraphQL authorization with OPA are highlighted, emphasizing consistency, flexibility, and scalability. The

document concludes with sample Rego policies that can be used as a foundation for securing GraphQL services, catering to various

authorization scenarios such as authentication, depth limitation, role-based access, and field-level restrictions.

Keywords

Open Policy Agent (OPA), Authentication, Authorization, Fine-Grained, GraphQL Security, Apollo Router

INTRODUCTION

GraphQL, a powerful query language for APIs, has gained

immense popularity for its flexibility and efficiency in data

fetching. However, securing GraphQL APIs can be a

complex challenge, especially when it comes to

authorization. Open Policy Agent (OPA) [1] offers a robust

solution to address these challenges by providing a unified

policy language for access control across various services,

including GraphQL.

Understanding GraphQL Authorization:

Authorization in GraphQL involves determining whether a

user or a client has the necessary permissions to execute a

specific query or mutation. Unlike traditional REST APIs,

where endpoints may correspond to specific actions,

GraphQL exposes a single endpoint for all interactions,

making fine-grained [2] authorization a crucial aspect of

securing the API.

Challenges in GraphQL Authorization:

GraphQL's flexibility in query construction allows clients

to request precisely the data they need. This presents a

challenge for traditional access control mechanisms, as the

authorization logic must account for the specific fields

requested within a query. Additionally, handling complex

relationships between types and ensuring consistent

authorization across various operations further complicates

the authorization process.

Open Policy Agent (OPA):

Open Policy Agent (OPA) [1] is an open-source, general-

purpose policy engine that enables fine-grained, context-

aware access control across diverse software stacks. OPA [1]

uses a declarative policy language called Rego, which allows

user to express complex authorization logic in a clear and

concise manner.

Architecture:

The architecture depicted in Figure 1 provides a complete

solution for Authentication and Authorization. It utilizes

JSON Web Tokens (JWT) [3] to secure and manage access to

resources. This design ensures a strong and scalable system,

which enhances the security of applications and services.

The following steps explain the architecture flow for both

authentication and authorization.

Step 1: GraphQL Request with ClientID Header

• The GraphQL client sends a request to the Apollo Router,

including the clientId as a Header.

Step 2: Apollo Router Processing and Coprocessor

Authentication

• Apollo Router processes the incoming request.

• The Coprocessor, an extensibility of the router, operates

as a sidecar.

http://www.cimachinelearning.com/

Computational Intelligence and Machine Learning

 e-ISSN: 2582-7464 Volume 5, Issue 1, April 2024

 2

• The Coprocessor retrieves the client secret from Vault [4]

using the ClientID.

• Coprocessor initiates an authentication request to the JWT

[5] token provider:

1. Pulls the client secret from Vault [4] using the

ClientID.

2. Performs the authentication request using ClientID

/Secret.

3. Token Provider authenticates using ClientID /Secret

and generates a JWT [5] Token if successful.

4. Sends the generated JWT [5] Token back as a response

to the Coprocessor.

Figure 1. Architecture Diagram for Authentication and

Authorization

Step 3: JWT Token Extraction and Authorization

Request

• Coprocessor extracts the JWT Token from the received

response.

• Prepares an authorization request to the Open Policy

Agent (OPA).

Step 4: OPA Validation and Decision

• OPA [1] receives the authorization request along with the

JWT [5] Token.

• OPA [1] validates the JSON request against the defined

policy.

• Provides a decision (allow or deny) based on the policy

evaluation.

Step 5: Response to GraphQL [6] Client

• Apollo Router receives the decision from OPA [1].

• If allowed, Apollo Router proceeds with executing the

GraphQL [6] request.

• If denied, Apollo Router sends an appropriate response to

the GraphQL [6] client, indicating access denial.

This architecture flow outlines the process from the

GraphQL client request, through authentication using JWT

[5] tokens, to authorization using OPA, and finally, the

response to the GraphQL [6] client based on the policy

decision.

OPA Execution Flow:

Figure 2. Integrating OPA with GraphQL Router

Figure 2 illustrates the implementation of GraphQL

authorization using OPA. To achieve this, follow these key

steps:

Define Policies in Rego [7]:

Write policies in Rego [7] that express the authorization

logic for GraphQL API. These policies can include rules for

specific queries, mutations, and fields based on user roles,

attributes, or any other relevant context.

Integrate OPA [1] into the GraphQL Server:

Integrate OPA [1] into your GraphQL server to evaluate

policies at runtime. This can be done by creating a

middleware or a resolver that intercepts incoming requests

and consults OPA [1] for the authorization decision.

Enforce Fine-grained [2] Authorization (FGA):

Leverage OPA's ability to understand the structure of

GraphQL queries to enforce fine-grained [2] authorization.

OPA can inspect the requested fields and relationships within

a query, ensuring that users only get access to the data they

are authorized to retrieve.

Handle Relationships and Nested Queries:

GraphQL's nested structure allows clients to request data

at different levels of depth. OPA can handle these

relationships by recursively evaluating authorization policies

for each level of the query, providing a comprehensive and

secure approach to nested queries.

Audit and Monitor Authorization Decisions:

OPA provides transparency into the authorization process

by logging decision details. Use this information for auditing

and monitoring purposes, allowing you to track and analyze

access patterns, identify potential security threats, and make

informed policy adjustments.

http://www.cimachinelearning.com/

Computational Intelligence and Machine Learning

 e-ISSN: 2582-7464 Volume 5, Issue 1, April 2024

 3

Benefits of GraphQL Authorization with OPA:

• Consistency: Ensure consistent and centralized

authorization logic across your GraphQL API.

• Flexibility: Adapt authorization policies easily without

modifying the underlying GraphQL server.

• Scalability: Handle complex access control requirements

as your GraphQL schema evolves.

Rego [7] Policy Language:

Rego [7] (short for "Regulation") is a policy language used

with Open Policy Agent (OPA) to enforce policies across

cloud-native environments. Below are some sample Rego [7]

policies that user can use as a starting point for securing

GraphQL services. These policies assume that user has a

basic understanding of Rego [7] and OPA.

Sample Policy 1: Allow only authenticated users to access

certain GraphQL operations

package graphql.security

default allow = false

allow {

input.request.method == "POST"

input.request.path == ["graphql"]

input.parsedToken != null

}

This policy ensures that only authenticated users can

perform GraphQL mutations by checking if the HTTP

method is POST, the path is "/graphql", and a valid

authentication token is present.

Sample Policy 2: Limit the depth of GraphQL queries to

prevent abuse

package graphql.security

default allow = false

allow {

input.request.method == "POST"

input.request.path == ["graphql"]

count(input.parsedQuery) <= 10

}

This policy restricts the depth of GraphQL queries to 10

levels. Adjust the limit according to your application's needs

to prevent overly complex queries.

Sample Policy 3: Allow only specific roles to execute certain

GraphQL operations

package graphql.security

default allow = false

allow {

input.request.method == "POST"

input.request.path == ["graphql"]

input.parsedToken != null

has_permission(input.parsedToken, "write_data")

}

has_permission(token, permission) {

token.roles[_] == permission

}

In this policy, only users with the "write_data" role are

allowed to execute GraphQL mutations. Customize the role

and permission checks based on your authorization

requirements.

Sample Policy 4: Restrict access to specific GraphQL fields

based on user roles

package graphql.security

default allow = false

allow {

input.request.method == "POST"

input.request.path == ["graphql"]

input.parsedToken != null

can_access_field(input.parsedToken, input.parsedQuery)

}

can_access_field(token, query) {

some field

field == "sensitiveField"

token.roles[_] == "admin"

}

This policy restricts access to the "sensitiveField" in

GraphQL queries, allowing only users with the "admin" role

to access it. Extend the can_access_field rule for other

sensitive fields.

Sample Policy 5: Rate limit GraphQL requests per user

package graphql.security

default allow = false

allow {

input.request.method == "POST"

input.request.path == ["graphql"]

input.parsedToken != null

not rate_limited(input.parsedToken)

}

rate_limited(token) {

count_recent_requests(token) > 10

}

count_recent_requests(token) = count {

recent_request[token] = timestamp

timestamp - recent_request[token] < 60

}

http://www.cimachinelearning.com/

Computational Intelligence and Machine Learning

 e-ISSN: 2582-7464 Volume 5, Issue 1, April 2024

 4

This policy prevents users from making more than 10

GraphQL requests per minute. Adjust the limit as needed.

Remember to adapt these policies based on business

specific use cases, GraphQL schema, and

authentication/authorization mechanisms. Integrate these

policies into OPA setup to enhance the security of GraphQL

services.

CONCLUSION

To conclude, Open Policy Agent (OPA) combined with

GraphQL authorization offers a flexible and robust solution

to securing GraphQL APIs. As highlighted in this paper,

GraphQL's dynamic nature and the ability of clients to

precisely define their data retrieval requirements present

distinct challenges in comparison to traditional REST APIs,

making Fine-grained [2] Authorization a critical aspect.

The comprehensive architecture illustrated in Figure 1,

along with the detailed step-by-step integration process,

demonstrates how OPA can be seamlessly incorporated into

a GraphQL server for enhanced access control. GraphQL

queries require developers to articulate complex

authorization logic concisely using OPA's declarative policy

language, Rego [7].

As outlined above, the benefits of implementing GraphQL

authorization with OPA, such as consistency, flexibility, and

scalability, emphasize the advantages of this approach in

ensuring a secure and reliable API. These sample Rego [7]

policies cover various authorization scenarios, including

authentication, depth limitation, role-based access, and field-

level restrictions for securing GraphQL services.

By enforcing Fine-grained [2] Authorization through OPA,

organizations can ensure that users receive access only to the

data they are authorized to access, even in the face of

GraphQL's dynamic query construction. In addition, OPA's

auditing and monitoring capabilities make the authorization

process transparent, enabling organizations to monitor access

patterns, identify potential security threats, and adjust policies

accordingly.

The integration of OPA with GraphQL authorization is in

line with industry standards and the evolving landscape of

API security. This provides a solution that is both powerful

and adaptable to the dynamic nature of GraphQL. With more

organizations adopting GraphQL for its efficient data

fetching, OPA is an important ally in enhancing the security

and reliability of GraphQL APIs.

ACKNOWLEDGEMENTS

We extend our sincere gratitude to all those who

contributed to the development and completion of this article

on "Securing GraphQL APIs with Open Policy Agent (OPA):

A Fine-Grained Authorization Approach." Special thanks to

the authors and researchers who dedicated their time and

expertise to thoroughly investigate and articulate the

challenges and solutions in GraphQL authorization, with a

focus on integrating Open Policy Agent. The collaborative

effort involved in outlining the architecture, detailing the

step-by-step integration process, and providing sample Rego

policies has been instrumental in delivering a comprehensive

resource for developers, security professionals, and

organizations navigating the complexities of GraphQL

security. This acknowledgment extends to the broader

community that engages in the discourse around API security

and GraphQL best practices. The commitment to knowledge-

sharing and advancing secure development practices is

pivotal, and we appreciate the collective dedication that

makes such contributions possible.

REFERENCES

[1] OPA Documentation:

Open Policy Agent (OPA) documentation. Available at:

https://www.openpolicyagent.org/docs/latest/

[2] Fine-Grained Authorization in GraphQL:

Article on fine-grained authorization in GraphQL. Available at:

https://blog.apollographql.com/fine-grained-authorization-in-

graphql-bfd73c5153b

[3] JSON Web Tokens (JWT) Overview:

JWT overview. Available at: https://jwt.io/introduction/

[4] Vault Documentation:

HashiCorp Vault documentation. Available at:

https://www.vaultproject.io/docs/

[5] JWT Documentation:

JSON Web Tokens (JWT) documentation. Available at:

https://jwt.io/introduction/

[6] GraphQL Documentation:

GraphQL official documentation. Available at:

https://graphql.org/

[7] Rego Language Documentation:

Rego language documentation. Available at:

https://www.openpolicyagent.org/docs/latest/policy-language/

http://www.cimachinelearning.com/
https://www.openpolicyagent.org/docs/latest/
https://blog.apollographql.com/fine-grained-authorization-in-graphql-bfd73c5153b
https://blog.apollographql.com/fine-grained-authorization-in-graphql-bfd73c5153b
https://jwt.io/introduction/
https://www.vaultproject.io/docs/
https://jwt.io/introduction/
https://graphql.org/
https://www.openpolicyagent.org/docs/latest/policy-language/

